
Investigating Monocular Depth
Estimation Methods

Bachelor Thesis

Christian Shaffer-Lassen (mkv334)

January 13, 2025

Advisor: Stefan Sommer

Department of Computer Science, University of Copenhagen

Abstract

Monocular Depth Estimation (MDE) is a critical computer vision task of
predicting the pixel-wise depth in a scene from two-dimensional images.
Despite its potential, MDE faces challenges such as scale ambiguity,
data scarcity, and computational trade-offs that impact real-world appli-
cability. This thesis systematically investigates various MDE approaches,
with a focus on encoder architectures, including Convolutional Neural
Networks, Vision Transformers, and foundation models like DINOv2,
while emphasizing the role of transfer learning. By analyzing accuracy,
efficiency, and generalization, the study identifies strengths, weaknesses,
and practical trade-offs between these architectures.

The results demonstrate that models initialized with pretrained weights
consistently outperformed their non-pretrained counterparts, with sig-
nificant improvements in threshold accuracy and RMSE, highlighting
the importance of leveraging transfer learning. The DINOv2 foundation
model achieved the best performance across all metrics, showcasing its
robustness for downstream tasks. A custom lightweight encoder archi-
tecture was proposed, but achieved underwhelming results, due to lack
of depth and design choices. To address the limited ground truth depth
data, a pseudo-labeling experiment using DepthAnythingV2 revealed
qualitative improvements in domain generalization, though quantitative
results were underwhelming. Ablation studies underscored the critical
role of skip connections for sharp edge predictions and the trade-offs
between encoder depth and computational efficiency. Future directions
include optimizing lightweight designs and scaling pseudo-labeling to
improve performance in diverse scenarios.1

1Models and training code available at: https://github.com/Shaffer-Lassen/bachelor

i

https://github.com/Shaffer-Lassen/bachelor

Contents

Contents ii

1 Introduction 1

2 Background 4
2.1 Depth Estimation . 4

2.1.1 Traditional Depth Estimation 4
2.1.2 Monocular Depth Estimation 5

2.2 Convolutional Neural Networks (CNN’s) 5
2.2.1 Convolutional Layers 5
2.2.2 Activation functions . 6
2.2.3 Pooling Layers, Batch Normalization 7

2.3 Vision Transformers . 7
2.3.1 Patch Embeddings . 8
2.3.2 Self-Attention Mechanism, Multi-Head Attention &

Transformer Blocks . 8
2.4 Related work . 9

2.4.1 CNN-based Approaches 9
2.4.2 Transformer-based Approaches 10
2.4.3 Foundation Models for Depth 10
2.4.4 Self- and Semi-supervised Training 10

2.5 Ongoing Challenges in Monocular Depth Estimation 11
2.6 Motivation . 11

3 Methodology 13
3.1 Architectures in this work . 13
3.2 CNN as Encoder . 14

3.2.1 ResNet . 14
3.2.2 DenseNet . 16

3.3 Transformer as Encoder (Swin-Transformer) 17

ii

Contents

3.4 Foundation Model as Encoder (DINOv2) 18
3.5 Custom Method - Lightweight CNN with Spatial Attention) . 19
3.6 Decoder . 20
3.7 Data and Training . 21
3.8 Evaluation . 22

4 Experiments 24
4.1 Experimental Setup . 24
4.2 Architectural Experiment . 25
4.3 Ablation Study . 26
4.4 Pseudo-Label Experiment . 27
4.5 Reproducibility . 28

5 Results & Discussion 29

6 Conclusion & Future Work 36

Bibliography 38

A Ablation Study 43
A.1 Encoder Depth . 43
A.2 Skip Connections . 44
A.3 Loss Functions . 44
A.4 Decoder Architecture. 45

B Pseudo Labels 46

iii

Chapter 1

Introduction

When analyzing images, a central objective is to recognize how objects are
arranged in space; particularly, how far they are from the camera or from
each other [33, 4]. This corresponds to a spatial understanding, so to speak, of
the images, also referred to as depth estimation. The task of depth estimation
is important in many computer vision applications, such as autonomous
navigation [12], robotics [39], and augmented reality [3, 13]. Information
about the depth of a scene allows systems to perceive three-dimensional
relationships from inherently two-dimensional images, enabling tasks like
obstacle avoidance, object manipulation, and human–machine interaction [5].

Traditional methods for extracting depth information rely on specialized
hardware, including stereo camera setups or laser-based sensors (LiDAR) [12],
which are expensive and difficult to work with. Consequently, deployment of
these systems and large-scale data collection becomes impractical. Monocular
Depth Estimation (MDE) addresses this challenge by predicting depth from a
single 2-dimensional RGB image [13], eliminating the need for multi-camera
setups or active sensors at inference time. Mathematically, one can view
MDE as the problem of learning a mapping

f : R3×H×W → RH×W (1.1)

where I ∈ R3×H×W is the input image, and f (I) is a dense depth map
assigning a depth value to each pixel [33].

Despite remarkable progress, MDE remains a difficult problem [9, 34]. Images
recorded by a single camera compress the 3D scene into a 2D projection,
discarding explicit information about scale, which arguably makes the task
ill-posed [24, 4]. Consequently, MDE forces models to rely on learned priors
or contextual cues, such as textures, lighting conditions, and familiarity with
objects and shapes, to approximate distances [11, 16]. Moreover, the shortage
of extensive ground-truth datasets with accurate pixel-level depth annotations

1

imposes additional challenges. Producing dense ground truth depth typically
involves scanning devices or complex stereo calibration pipelines, which may
be infeasible on a large scale [39, 49]. As a result, MDE models can suffer from
limited training data, making them vulnerable to domain overfitting and
diminished generalization when encountering previously unseen contexts
[53, 14].

Early research in MDE embraced deep learning paradigms, predominantly
using convolutional neural networks (CNNs) [22, 26, 9] to learn robust repre-
sentations from raw image data. More recently, vision transformers [8, 27]
and large-scale foundation models [31, 6] have pushed performance bound-
aries, leveraging self-attention mechanisms, self-supervision, and massive
pre-training on large scale datasets. However, transformer architectures are
often memory-intensive and computationally expensive [45, 49]. Real-time
applications or hardware-constrained devices require more efficient models
without incurring substantial drops in accuracy [40, 18].

The objective of this thesis is to systematically investigate and evaluate differ-
ent architectural approaches to MDE, including CNNs, Vision Transformers,
and foundation models, as well as to cover the importance of transfer learn-
ing. We identify strengths and weaknesses in terms of different accuracy
metrics, efficiency, and generalization capabilities. Additionally, the thesis
aims to address the challenge of data scarcity in MDE, by evaluating the
feasibility of using pseudo-labeled data to improve domain generalization.

Figure 1.1: Illustration of monocular depth estimation, where a single RGB image (left) is
mapped to a dense depth prediction (right). Prediction with the DINOv2 encoder.

In the following chapters, we first present the fundamental concepts of depth
estimation and demonstrate why recovering three dimensional information
from two-dimensional images is nontrivial. Chapter 2 formally defines the
problem of depth estimation as well as motives the necessity of a continuous
development in the field of MDE. It presents fundamental concepts of CNNs
and Transformers and surveys the evolution of MDE approaches, beginning

2

with early CNN-based methods, transitioning into more modern transformer-
based architectures, and lastly review the recent breakthroughs in computer
vision foundation models. Chapter 3 outlines the architectures of the models
employed in our experiments in detail. This chapter also highlights sup-
porting methods relevant for training process, such as data pre-processing
and augmentation. The experimental work is described in Chapter 4, which
presents how the full range of experiments is conducted – from encoder
architecture comparisons to ablation experiments on encoder depth, skip
connections, and loss functions. Additionally, this chapter describes our in-
vestigation into leveraging pseudo-labels from DepthAnythingV2 to annotate
unlabeled COCO images and train a student model. Chapter 5 presents both
quantitative and qualitative findings from experiments, assesses whether they
align with expectations, and identifies limitations of conducted experiments.
Lastly, the thesis concludes the main contribution in Chapter 6, references
the initial research questions, and outlines promising directions for further
exploration of efficient and accurate MDE models.

3

Chapter 2

Background

To fully grasp the methodology adopted in this thesis, we start by presenting
a background chapter. The chapter covers the fundamentals of depth estima-
tion, as well as formally define monocular depth estimation. Furthermore,
the chapter introduces the fundamentals of CNNs and Vision Transformers,
two widely adopted methods for solving MDE. Finally, we survey different
existing approaches to solving the MDE task in Section 2.4.

2.1 Depth Estimation

Depth estimation is the task of predicting how far every given object in a
scene is from the camera and other objects in the same scene. Monocular
depth estimation recovers the three-dimensional scene of objects from a
single RGB image [33, 4]. Unlike methods that rely on multiple cameras or
specialized sensors, monocular approaches estimate how far each pixel is
from the camera using visual cues in a single view [13] learning via deep
learning methods. Visual cues could be various properties connected to
depth in an image, such as parallel lines that converge towards a vanishing
point or objects that does not vary a lot in size.

2.1.1 Traditional Depth Estimation

Traditional solutions avoid scale ambiguity by measuring 3D information
more directly and computing a geometric estimate [23]. Stereo vision uses
two horizontally separated cameras, inspired by the human eyes, to measure
the disparity between each pair of matched pixels [12], leading to a depth
estimate. Another technique uses LiDAR sensors that emit laser pulses
and time their return, constructing accurate 3D maps [46]. Both approaches
achieve high depth accuracy but require specialized hardware and calibration.

4

2.2. Convolutional Neural Networks (CNN’s)

MDE removes these hardware constraints and infers depth from a single
RGB image [13, 4, 9]. This is advantageous because, unlike traditional depth
sensing, MDE can theoretically be applied in many more contexts.

2.1.2 Monocular Depth Estimation

Formally, monocular depth estimation can be framed as learning a function

f : R3×H×W → RH×W , (2.1)

which predicts a pixel-wise depth map D ∈ RH×W from a single input image
I ∈ R3×H×W .

Unlike stereo-based depth estimation methods, MDE relies solely on learning
abstract features that capture pixel-level patterns relevant for depth. Learning
these abstract features in the diversity of real world settings requires a huge
amount of training data [32]. However, obtaining quality depth annotations
is expensive and can be incomplete or noisy, especially in reflective regions
[11, 14]. Therefore, ground truth depth data are limited and approaches
often rely on supporting techniques to produce quality depth maps. Models
trained on mostly indoor data often struggle in outdoor environments with
different scales and lighting [53]. Even if the relative depth ordering of a
prediction is correct, the global scale can be off, highlighting the complexity
of MDE [9]. The scale ambiguity has led to several approaches for solving
MDE for relative depth rather than absolute depth [35, 49].

As earlier stated, most successful approaches to the MDE problem have
involved deep learning architectures such as CNNs and vision transformers.
In the following sections, we cover the fundamentals of such networks and
the mechanisms that make them feasible for MDE.

2.2 Convolutional Neural Networks (CNN’s)

A convolutional neural network (CNN) is a class of deep learning models
designed to process data with grid-like structures, such as images. This
section covers the main methodology and concept of CNN’s in order to
motivate the use on computer vision tasks like MDE.

2.2.1 Convolutional Layers

The main building blocks of CNN’s are the convolutional layers. Convo-
lutional layers apply a filter that slides across the input data to learn the
relational structures and patterns of an image. Formally, given an input
tensor x ∈ RCin×H×W and a filter W ∈ RCout×Cin×K×K, the convolutional

5

2.2. Convolutional Neural Networks (CNN’s)

operation outputs [15]:

y =
Cin

∑
c′=1

K

∑
k1=1

K

∑
k2=1

Wc,c′,k1,k2 · xc′,h+k1,w+k2 , (2.2)

where y ∈ RCout×Hout×Wout is the output feature map. Each filter applied
captures features within their receptive field of K × K pixels. One of the key
features of convolutional layers is the spatial weight sharing, since the same
filter is applied to all of the input data [15]. In comparison, fully connected
layers in neural networks have a unique weight for every connection. Sup-
pose that an input image I with dimensions 32 × 32 × 3 (H × W × Channels)
is passed through a convolutional layer and a fully connected layer for com-
parison. Number of output channels is set to 64.

A standard convolutional 3 × 3 filter is applied. The total number of parame-
ters is then:

Pconv = Cout · Cin · K · K + Cout = 64 · 3 · 3 · 3 + 64 = 1, 792.

For the fully connected layer, with an output size of 64 neurons, the total
number of parameters is:

Pfc = Cin · Cout + Cout = 3, 072 · 64 + 64 = 196, 608.

This comparison illustrates that the fully connected layer requires significantly
more parameters than the convolutional layer due to the absence of weight
sharing. However, fully connected layers are often implemented at the end
of a CNN in order to flatten feature maps and produce predictions at a
meaningful channel dimension.

2.2.2 Activation functions

Activation functions introduce non-linearity to neural networks by only
activating pre-defined outputs, hence the name [15]. Activation function are
usually applied on the output one or more layers to guide the gradient to
focus on correct predictions. This work will use two different varitions of the
ReLU activation function, which are often seen in MDE networks. ReLU is
defined as [36]:

ReLU(x) = (x)+ = max(0, x) (2.3)

The simple definition os the ReLu activation function describes that only
positive inputs are activated throughout the network. Negative prediction
will always output 0. This loss function is widely used in MDE models, as
the objective is to estimate the Euclidean distance between the camera and
each pixel in the input image. A variation LeakyReLU is defined as [25]:

LeakyReLU(x) =

{
x, if x ≥ 0,
negative slope · x, otherwise.

(2.4)

6

2.3. Vision Transformers

LeakyReLU takes a negative slope (float) as input an applies it to all x < 0.
This addresses a common issue with the ReLU function, where many neurons
may become inactive when their outputs are set to zero. This can hinder the
optimizer’s ability to effectively update weights during backpropagation.

Finally, we introduce the sigmoid activation function, which is used sparingly
in this thesis. The sigmoid function is defined as [38]:

Sigmoid(x) = σ(x) =
1

1 + exp(−x)
(2.5)

The sigmoid activation function normalizes all outputs to a value between
[0; 1]. This is particularly useful in MDE models that are trained on inverse
normalized depth maps for relative depth estimation as done as a part of the
experimental work in this thesis.

2.2.3 Pooling Layers, Batch Normalization

Pooling layers are a class of layers responsible for reducing the spatial di-
mensions of the feature maps of the network, while preserving relevant
information. The pooling operations used in this work include maximum
pooling or average pooling in CNN networks. Max-pooling takes some win-
dow size K × K and a stride s, reducing a window of pixels to its maximum
value, while average-pooling computes the mean value within the window.

For example, applying with a 2 × 2 window size and a stride of two, will
reduce spatial dimensions by 2, as it reduces a 2×2 pixel window to a single.
Batch Normalization is a technique widely used in deep learning that stabilizes
and accelerates deep neural network training [20, 15]. The process involves
a normalization, where the mean and variance of are computed across the
batch. This is followed by rescaling and shifting, to preserve the layer’s
ability to learn complex features.

2.3 Vision Transformers

CNN based architectures have in many years been the standard for solv-
ing the MDE task. However, more recently, researchers have increasingly
turned to Vision Transformers as a key architectural component in their
solutions. ViT-based MDE models have actually achieved better performance
results than CNNs primarily due to their less restrictive receptive field [33].
Despite their advantages, ViTs have limitations. Their larger number of learn-
able parameters makes them more computationally expensive compared to
CNN [33]. To address this challenge, researchers have developed hybrid
approaches that leverage both architectures’ strengths. These hybrid models
typically combine a ViT encoder, which excels at capturing global context,

7

2.3. Vision Transformers

with a CNN decoder [34, 47, 51]. This design pattern allows the model to
benefit from the ViT’s broad receptive field while maintaining computational
efficiency through CNN components. Given the growing significance of
Vision Transformers in monocular depth estimation, this section explores
their core principles and mechanisms.

2.3.1 Patch Embeddings

The first step of any vision transformer is to decompose the image I ∈
RC×H×W into a sequence of patches xp ∈ RN×(P2×C), where P is the patch
size and N is the number of patches[8]. Each patch is then projected into a
D-dimensional space using a learnable projection matrix E:

E ∈ R(P2×C)×D (2.6)

The resulting patch embeddings from this proccess can be described as:

z0 = [xpE; xpE; ...; xpE] + Epos, (2.7)

where Epos ∈ RN×D learnable positional matrix, both for absolute and relative
positions of patches, ; is the concatenation along the sequence dimension and
z0 is the initial transformer input.

2.3.2 Self-Attention Mechanism, Multi-Head Attention & Trans-
former Blocks

The self-attention mechanisms are the innovation that enables ViT’s to capture
global dependencies. First patch embeddings is transformed into three
seperate vectors. Formally, each input vector z is transformed into:

Q = zWq, K = zWk, V = zWv, (2.8)

where Q represent queries, K represent keys and V represents values. From
these vectors, an attention score is computed [42]:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V, (2.9)

where QK is the dot product between K and Q, softmax ensures that attention
scores sum to 1, and the multiplication with vector V computes the weighted
sum of values.

Multi-head attention is an attention mechanism that is repeated several times
in parallel with different learnable projections, creating multiple attention
heads. This ability allows the model to capture different relational features
simultaneously [42].

8

2.4. Related work

Analogous to convolutional blocks in CNN, transformer blocks serve as the
primary processing component in Vision Transformers [8]. Each transformer
block usually consists of a multi-head attention layer followed by a multi-
layer perceptron layer [30]. Layer normalization before each component and
residual connections between them are a common accepted practice.

Despite the constraints of higher computational cost, vision transformers
demonstrate highly usable abilities of learning relational features through
attention mechanisms. Their ability to capture global dependencies from the
first forward, due to their global receptive field, is essential for its use in
MDE [34, 47].

2.4 Related work

Monocular depth estimation has attracted considerable interest in computer
vision, leading to various strategies for turning a single RGB image into a
dense depth map [33]. Early methods relied heavily on Convolutional Neural
Networks (CNNs) to learn how image features relate to depth [9, 24]. More
recent approaches incorporate transformers to capture broader context [34,
47]. Another emerging path involves large-scale foundation models, such as
DINOv2, which leverage extensive pretraining on unlabeled data [31]. Each
category addresses different aspects of the depth estimation challenge but
also faces notable drawbacks, especially with regard to domain shifts, data
limitations, and the inherent ambiguity of predicting distance from a lone
view.

2.4.1 CNN-based Approaches

The general pipeline of MDE models include a encoder–decoder design. This
is a design, where the data is first encoded into some feature representation
and then decoded into to a depth map. This is also the case for CNN-based
approaches. The encoder applies layers of convolutions and nonlinear ac-
tivations, gradually reducing the resolution of the image while learning
higher-level features. If we denote the input image by I ∈ R3×H×W , the
encoder produces a series of feature maps at various spatial scales, cap-
turing information from edges up to more abstract shapes. The decoder
then upsamples these feature maps back to the original spatial dimensions,
combining them with intermediate outputs (often called skip connections) so
that important details lost during downsampling are recovered for the final
depth map D̂ ∈ RH×W [9, 17, 24].

Architectures such as ResNet [17] and DenseNet [19] are widely used as CNN
backbones, while more compact variants exist for faster inference on embed-
ded hardware [18, 40]. By backbone, we mean pretrained networks acting as
encoder of a model. Some CNN-based models emphasize scale-invariant or

9

2.4. Related work

ordinal loss functions to handle the difficulty of predicting absolute depth.
Others include multi-scale feature fusion, allowing the network to combine
fine details from early layers with broader context from deeper layers [2, 10].
These designs achieve strong performance on datasets similar to the training
distribution but can struggle when scenes differ significantly in lighting or
geometry [53].

2.4.2 Transformer-based Approaches

Transformers address one of the main weaknesses of CNNs: limited ability
to model long-range relationships in a single pass. Rather than convolving
over local regions, transformers use self-attention across the entire image to
decide which patches of pixels should focus on one another [8]. An image is
split into patches, each turned into a vector token. Multiple tokens form a
sequence, and the model learns attention weights indicating how strongly
each token should influence every other token. This approach can help the
network infer depth more accurately in scenes with large or widely separated
objects [52, 27].

Pure transformers sometimes require massive memory and computation
when dealing with high-resolution images [34]. To address this, researchers
explore hybrid CNN–transformer architectures, which rely on convolutional
blocks for the early layers and transformer blocks to capture global context
[51, 41]. Even with these optimizations, transformer-based models often pose
practical challenges in resource contrained settings.

2.4.3 Foundation Models for Depth

Foundation models like DINOv2 [31] are pretrained on large-scale image
collections without specialized depth annotations [6]. They learn general
visual features from very large and diverse data sources that can later be
adapted for depth prediction or other downstream tasks. One might take a
pretrained backbone that was trained on millions of unlabeled images, then
attach a task-specific head to produce a depth map.

Because foundation models are often large, they may be expensive to run in
real time. They can also be difficult to fine-tune if the pretrained objective
differs too strongly from the depth estimation goal. However, in many cases,
they transfer well across computer vision domains, handling indoor and
outdoor scenes more robustly than models trained solely on a single dataset
[50].

2.4.4 Self- and Semi-supervised Training

Both self- and semi-supervised MDE has emerged as a significant research
field to address the reliance on large-scale datasets with ground truth depth

10

2.5. Ongoing Challenges in Monocular Depth Estimation

maps to improve generalization [13] and the data scarcity. In deep learning,
self-supervised learning is the training of a model completely without labeled
data. Self-supervised methods that estimate depth labels with photometric
consistency between left and right image pairs [13] showed how the reliance
on labeled data could be minimized and were later followed by approaches
that use sequential frames from monocular video to learning.

Semi-supervised learning typically combines traditional supervised learning,
with methods such as pseudo-labeling [48] to improve robustness in various
domains. By pseudo-labeling, we mean training teacher model to annotate
unlabeled data with predictions to improve the diversity of e.g. real work
scenes. The annotated data is then used to train a student model. Synthetic
data has also proven effective in making smoother predictions, as the labeled
data quality is extremely high. One recent approach trains a teacher model
solely on synthetic data, followed by a large-scale pseudo-labeling process to
incorporate the complexity of real world images [49].

2.5 Ongoing Challenges in Monocular Depth Estimation

Regardless of architecture, the monocular depth estimation must deal with
scale ambiguity, since the image alone does not reveal how large or distant
objects are [9, 3]. Although networks often learn good relative ordering,
predicting which objects are in front or behind, the absolute scale can be
off by a constant factor in novel settings. Data availability also remains
an obstacle. Collecting ground-truth depth typically requires stereo rigs,
LiDAR sensors, or other hardware, making comprehensive, accurate datasets
difficult and expensive to obtain [39, 12, 35]. Domain gaps between indoor
and outdoor scenes, or between synthetic and real imagery, can degrade
performance unless models are carefully adapted or regularized [53].

Transformer-based or foundation models often handle domain shifts better,
but can be large and slow. CNN-based methods run efficiently on smaller
devices but may overfit to specific scene types and fail to capture global
context well. Thus, current research seeks to combine ideas from each branch,
developing solutions that preserve much of the flexibility and robustness of
high-capacity architectures while remaining deployable on resource-limited
platforms [45, 40]. These efforts continue to shape the evolution of monocular
depth estimation, with the aim of finding solutions that are accurate on
absolute depth and practical in real-world contexts.

2.6 Motivation

Despite these constraints, single view depth estimation remains crucial in
scenarios where multi-camera setups or specialized sensors are infeasible

11

2.6. Motivation

[45, 5]. Its reduced hardware demands make it suitable for mobile devices
or devices limited in resources, though purely lightweight models under-
perform more computationally intensive approaches. Current research aims
to fuse the strengths of high-capacity architectures with efficiency-focused
designs [40, 18], seeking an optimal balance between precision and practical-
ity. The motivation of this thesis is to map the impact of different encoder
architectures and other network components, in order to make better design
choices, when building an MDE model with the accuracy-efficiency trade-
off in mind. Furthermore, the data scarcity described motivates the search
for complementary techniques, such as leveraging pseudo-labeled data, if
feasible.

12

Chapter 3

Methodology

This chapter outlines the methodology adopted in this work, focusing on
different encoder architectures and training practice. The primary focus of
this work is to compare multiple architectures. The encoder architectures
uses in this work includes CNNs, Vision Transformers, a foundation model
and a lightweight custom design. The following sections describe these
existing approaches in detail, as well as presents some of the foundational
theory behind the approaches.

3.1 Architectures in this work

All models trained in the experimental work of this thesis take an RGB
image I ∈ R3×224×224 as input and produce a predicted depth map D ∈
R1×112×112 - that is, a prediction of the input resolution 1

2 . This is done
through a U-net architecture [37], where the encoder is responsible for
downsampling the spatial resolution and extracting abstract features. The
decoder receives the deepest layer (with smallest resolution) as input and
progressively upsamples it. Skip connections are implemented between the
encoder and the decoder, where the information is transferred directly, see
Fig. 3.1. The main architectural focus of the thesis is the encoder, which is
why the decoder remains the same in all models. The following sections
describes the different architectures, that we adopt for our encoders – two
CNN, a Transformer network, a foundation model, and a custom more
lightweight network.

13

3.2. CNN as Encoder

Encoder DecoderFeature Maps

Skip Connection

Figure 3.1: Illutstration of the U-net architecture, that all models of this thesis implements.
Input is progressively downsampled by the encoder, while the decoder upsamples a final prediction
to 1 channel of 1

2 input resolution. Skip connections are adopted to preserve details.

3.2 CNN as Encoder

CNN is chosen as the primary baseline for its strong track record in monocu-
lar depth estimation [22, 17]. For experimental work, we have selected ResNet
and DenseNet[17, 19], originally designed for classification, to act as our
encoder networks in two different models inspired by [24, 2]. Both backbones
will be trained with and without pretrained weight from ImageNet-1K [7].
The following describes the architecture of ResNet and DenseNet, respec-
tively, and highlights what differentiates them.

3.2.1 ResNet

Resnet, introduced by He et al. [17], is a well-known CNN that tackles
the vanishing gradient problem by implementing residual connections. The
introduction of residual connections made it possible to train deeper network,
without losing features learned early in the network. The core of ResNet
is the bottleneck blocks, that consists of a 1x1 convolution that reduces

14

3.2. CNN as Encoder

channel dimensions, a 3x3 convolution to capture features, and another
1x1 convolution that either restores or expands the channel dimensions.
The residual connection is made between the input and output for each
bottleneck block, adding the input to the output of the final convolution
through a simple, yet effective element-wise addition. ResNet has several
implementation with varying depth. The baseline implementation for our
experimental work is ResNet50 [43]. ResNet50 consists of bottleneck blocks
grouped into four different stages. Each stage contains 3, 4, 6, and 3 blocks,
respectively. Before entering the bottleneck stages, the input resolution is
downsampled to 1

4 by an initial 7x7 convolution with a stride of 2 followed
by batch normalization, ReLU activation, and a max-pooling operation. In
this process, the channel size is increased from 3 (RGB) to 64.

Bottleneck
input

1x1 Conv

Batch Norm

ReLU

3x3 Conv

Batch Norm

ReLU

1x1 Conv

Batch Norm

Addition of conv
layers and initial

input (+)
ReLU Final Output

Residual Connection

Figure 3.2: Illustration of a single Bottleneck from the ResNet CNN

As the network progresses through the bottleneck stages, the features maps
will adopt channel dimensions of 256, 512, 1024, and 2048, while the spatial
resolution of each feature map is 56 × 56, 28 × 28, 14 × 14, and 7 × 7. For
our MDE model, output of each of the four stages is preserved in order to
implement a U-net architecture with direct skip connection between encoder
and decoder at matching spatial resolution. In the experimental work, one
model will be initialized with pretrained ImageNet-1K classification weights
[7], ensuring that the encoder already captures a wide set of visual patterns
before fine-tuning the depth estimation task, while another model will be
trained without pre-initialized weight.

15

3.2. CNN as Encoder

ResNet50
Encoder

7x7 64 conv, st r i de 2

3x3 Max- Pool , st r i de 2

3 Sequent i al Bot t l enecks of :
1x1, 64 Conv
3x3, 64 Conv
1x1, 256 Conv

RGB Image of size
3 x 224 x 224

Initial stage Bottleneck stage 1

3 Sequent i al Bot t l enecks of :
1x1, 128 Conv
3x3, 128 Conv
1x1, 512 Conv

Bottleneck stage 2

3 Sequent i al Bot t l enecks of :
1x1, 256 Conv
3x3, 256 Conv
1x1, 1024 Conv

Bottleneck stage 3

3 Sequent i al Bot t l enecks of :
1x1, 256 Conv
3x3, 256 Conv
1x1, 2048 Conv

Bottleneck stage 4

Deepest output:
Feature maps of size

2048 x 7 x 7

x0 = i ni t i al _st age
x1 = st age1
x2 = st age2
x3 = st age3
x4 = st age4

Encoder output

Figure 3.3: Illustration of how the ResNet50 is used as encoder in our MDE model. Outputs of
all visualized stages are given as input to the decoder, that is the output of the encoder x0 − x4.

3.2.2 DenseNet

DenseNet, introduced by Huang et al. [19], is another approach that ad-
dresses vanishing gradients. The key innovation of DenseNet is how each
layer, within a block of layers, is connected to all prior layers within the
same block. The design fosters efficient feature preservation in deep network,
making it feasible for complex tasks like depth estimation. As ResNet, the
architectural design begins with an initial 7x7 convolution followed by a
max-pooling operation to reduce spatial dimensions. The encoder imple-
mentation used in this work is DenseNet169, as done by Alhashim et al. [2].
DenseNet169 has four blocks with 6, 12, 32, and 32 densely connected layers,
respectively. Between each of the dense blocks, there is a transition layer
that reduces channel dimensionality through 1 × 1 convolutions and average
pooling operations.

16

3.3. Transformer as Encoder (Swin-Transformer)

Input

3x3 Conv

Batch Norm

ReLU

3x3 Conv

Batch Norm

ReLU

3x3 Conv

Batch Norm

ReLU

3x3 Conv

Batch Norm

ReLU

3x3 Conv

Batch Norm

ReLU

3x3 Conv

Batch Norm

ReLU

Dense Block

Output

Figure 3.4: Illustration of a dense block, where every convolutional layer is connected to all prior
within that same block.

As with ResNet, the channel dimensions of DenseNet are progressive upsam-
pled, while the spatial dimensions are downsampled. DenseNet169 offers
a powerful feature extractor that facilitates robustness and generalization
through feature preservation. As with the ResNet50, one model will feature a
DenseNet169 encoder trained from scratch, while another will be initialized
with pretrained ImageNet-1K classification weights [7].

DenseNet169
Encoder

7x7 64 conv, st r i de 2

3x3 Max- Pool , st r i de 2

6 sequent i al uses of :
1x1 conv
3x3 conv

RGB Image of size
3 x 224 x 224

Initial stage DenseBlock 1

12 sequent i al uses of :
1x1 conv
3x3 conv

DenseBlock stage 2

32 sequent i al uses of :
1x1 conv
3x3 conv

DenseBlock stage 3

32 sequent i al uses of :
1x1 conv
3x3 conv

DenseBlock stage 4

Deepest output:
Feature maps of size

1664 x 7 x 7

x0 = i ni t i al _st age
x1 = DenseBl ock1
x2 = DenseBl ock2
x3 = DenseBl ock3
x4 = DenseBl ock4

Encoder output

2x2 max- pool st r i de 2 2x2 avg- pool st r i de 2 2x2 avg- pool st r i de 2 2x2 avg- pool st r i de 2

Figure 3.5: Illustration of DenseNet169 encoder used in our model

3.3 Transformer as Encoder (Swin-Transformer)

Another MDE approach that we implement for our MDE decoder is the
transformers. Transformers replace localized convolutional kernals with

17

3.4. Foundation Model as Encoder (DINOv2)

self-attention layers that assess relationships among all patches of the input
image as described in Section ??. We use a specific transformer, Swin, as
encoder in this thesis as in [30].

The Swin-Transformer is a vision transformer developed to serve as a general-
purpose backbone for computer vision tasks. The Swin transformer imple-
ments a hierarchical design that makes it more efficient than traditional
transformers. This is done by computing with what they call Shifted Win-
dows [30]. The key innovation of the approach with shifted windows is,
that self-attention computation, which are in general heavy, are limited to
non-overlapping local windows. This method makes the model flexible
for adopting different sizes. The base model is the version used in the
experimental work of this thesis.

At the initial stage, input images are divided into patches of size 4 × 4. With
each pixel having 3 channel, a patch will contain 48 pixel values, that are
now treated as a token. The patch splitting is followed by a linear embedding
layer that projects the raw pixel values into a higher-dimensional space of
size C = 128 for the base version. These two steps are what forms the tokens
for the first stage.

As mentioned, the Swin Transformer is hierarichal. It progressively reduces
spatial resolution while increasing feature dimensions (just like CNN’s)
through four stages. In the first stage, the spatial resolution is H

4 × W
4 . Self-

attention layers are applied based on windows in Swin blocks. The output
token of the first stage had dimension C = 128. Stage 2 reduces spatial
resolution to H

8 × W
8 , stage 3 H

16 × W
16 and stage 4 to H

32 × W
32 . In each stage,

several blocks are applied to capture and transform features. The dimension
C is 128, 256, 512, and 1024, respectively, in each of the stages.

3.4 Foundation Model as Encoder (DINOv2)

In order to cover the different approaches of solving the MDE task, we have
included a model, that leverages the foundation model, DINOv2 [31], as
a frozen backbone. A frozen backbone is a pretrained encoder, where no
weights are updated during training. By freezing the encoder, training time
will be reduced heavily, as back-propagation is only necessary in the decoder.
The DINOv2 is a computer vision foundation model capable of multiple
tasks, such as image classification, object detection and depth estimation. It
is built with a refined Vision Transformer [34] architecture as a backbone and
is designed to extract general applicable features from images, that is, the
foundation part.

DINOv2 is trained on more than 140 million images, a large-scale dataset
to ensure robust generalization capabilities [31]. Aditionally, the training is

18

3.5. Custom Method - Lightweight CNN with Spatial Attention)

self-supervised. The model learns image representations by aligning patches
within and across images without explicit labels [31, 6].

In order to use DINOv2 as our encoder, we process an image I ∈ R3×H×W

through the model and output several hidden layers to obtain features of
different spatial dimensions for skip connections and progressive upsampling
similar to the models presented previously.

3.5 Custom Method - Lightweight CNN with Spatial
Attention)

In our experimental work, we propose a CNN based encoder, that incorpo-
rates spatial attention on convolutions. The encoder design primarily follows
a CNN-based hierarichial structure, while incooporating a light-weight multi-
head spatial attention module. The core of the proposed model, is the
ConvolutionalAttentionBlocks. The blocks adopt an initial convolutional
block with a 3 × 3 convolution of stride 2, followed by batch normalization
and ReLU activation, which is a generally accepted pattern. Subsequently, a
multi-head attention module, inspired by transformers, computes the spatial
attention of the feature maps from the convolution. The attention mechanism
projects the input into query, key and value tensors, splits them into multiple
heads, and finally computes the scaled dot product across spatial locations.
The output is then projected back to the original feature space. Inspired by
ResNet, the blocks also apply a residual connection between the initial input
and the produced output.

7x7 conv, st r i de 2
Bat chNor m
ReLU act i vat i on

Initial Stage

Convol ut i onal Bl ock

Spat i al At t ent i on Bl ock

Resi dual Connect i on

Convol ut i onal Bl ock

Spat i al At t ent i on Bl ock

Resi dual Connect i on

Convol ut i onal Bl ock

Spat i al At t ent i on Bl ock

Resi dual Connect i on

Feat ur e maps f or decoder

Output

Input RGB Image

Custom Encoder
-CNN with spatial attention

Figure 3.6: Illustration of custom encoder implementing a CNN with spatial attention module

This custom encoder has an initial stage and 3 convolutional attention stages,
which is similar to the design of the other models, except that it only has
four total stages. The decoder remains the same and will be detailed in the
next section.

19

3.6. Decoder

3.6 Decoder

We implement all models with similar decoders, placing emphasis on the
encoder’s role. This section describes two different approaches to decoder
architectures that are quite straight forward, both implementing skip connec-
tions from the encoder.

Interpolation. The first decoder is adopted as default on all of our models
and is inspired by the simple architecture of Alhashim et al. [2]. This decoder
takes five multi-cale feature maps x0..x4, produced by the encoder, each one
corresponding to different spatial resolutions, with x0 being the largest and x4
being the smallest. The decoder then upsampled the features from the deepest
layer, x4, to the next spatial resolution, such that it matches x4. At this stage,
the upsampled output is concatenated with x3, that is the skip connection, as
x3 is directly inputted without further processing. This upsampling process
is done all the way from x4 to x0, accompanied by a series of convolutional
layers with batch normalization and ReLu activation functions. The final
upsampling block passes the output through a convolutional layer 3 × 3,
followed by a convolution 1 × 1 that reduces the channel dimension to 1,
which is the pixel-wise depth prediction.

x0 = 64x56x56
x1 = 64x56x56
x2 = 128x28x28
x3 = 256x14x14
x4 = 512x7x7

Input from encoder

x4 x = I nt er pol at i on(x4, s i ze x3)
x = Concat enat e(x4, x3)

x = I nt er pol at e(x, s i ze x2)
x = Concat enat e(x, x2)

3x3 Conv

Batch Norm

ReLU

2x

x = I nt er pol at e(x, s i ze x1)
x = Concat enat e(x, x1)

x3 x2 x1

3x3 Conv

Batch Norm

ReLU

2x

3x3 Conv

Batch Norm

ReLU

2x

x0

Fi nal out put :
Conv
Bat chNor m
ReLU
Reduct i on t o 1 channel

Output decoder
1 channel 112x112

Figure 3.7: Illustration of decoder used in our models based on interpolation

Transposed Convolution. The second decoder utilizes transposed convo-
lutions to progressively upsample the feature maps. It is inspired by fully
convolutional networks. This decoder takes five feature map inputs, x0...x4
as our other decoder. Starting with the deepest feature map x4 a transposed
convolution is applied to double the spatial resolution. We again deploy skip
connections through concatenations as earlier stated. The skip connection is
followed by a 3 × 3 convolution with batch normalization and ReLU activa-
tion to refine the combined features. This process is repeated until 1

2 encoder
input resolution is achieved. The main difference is the use of transposed
convolutions for upsamplings instead of interpolation. The characteristics of
each decoder is covered in 4.3.

20

3.7. Data and Training

3.7 Data and Training

Datasets relevant for supervised MDE training contain pairwise RGB images
and ground truth depth maps. Most datasets for MDE are obtained by
methods such as LiDAR or stereo vision camera setups. Some of the most
prominent datasets in the research field of MDE are the NYUv2 and KITTI
datasets:

• NYUv2 [39]: The NYUv2 data set consists of 1,449 densely labeled
images and depth pairs, as well as a raw dataset of more than 400k
images and depth maps. Depths and RGB images are captured as
video sequences using the Microsoft’s Kinect. The dataset contains
only indoor scenes. The densely labeled dataset of 1,449 samples has
been used to benchmark MDE model performance on indoor scenes
for years. The raw part of the dataset has been used to train a wide
range of MDE models throughout the years. Depth maps of the raw
dataset often have missing depth values due to noise during depth
measurements, such as shadows. The original resolution of NYUv2
data points are 640 × 320

• KITTI [12]: The KITTI dataset is a well-known and recognized dataset
in the field of computer vision, including depth estimation tasks. The
dataset is obtained by cars equipped with high-resolution cameras
and LiDAR sensors to capture RGB images and depths simultaneously.
Since it is captures from cars, the dataset consists of a diverse set of
outdoor only scenes. The large scale of the dataset and quality ground
truth depth maps have made it almost standard practice to use as
benchmark.

NYUv2 and KITTI is the two most used dataset in MDE research. The two
datasets have since served as the standard evaluation datasets for indoor
and outdoor depth performance, respectively. Some recent studies have
highlighted limitations in using these as evaluation when assessing the
capabilities of modern depth estimation models [49]. However, NYUv2
serves as the main training and evaluation dataset of the experimental work
carried out in the project.

The level of supervision, in training the presented MDE models, is strictly
supervised. The training relies on image and ground truth depth pairs from
the NYUv2 dataset, where a loss is computed between the predicted depth
and ground truth [39]. Before feeding the RGB images and the corresponding
ground truth to the models described in this thesis, both the images and
ground truth depth maps are scaled to 256 on the shortest side, followed by
a random crop of 224 × 224. During training a horizontal flip is performed
on the input data with a probability of 0.5. This is the input resolution of
all models trained in this thesis. The predicted depth maps are 1

2 input

21

3.8. Evaluation

resolution 112 × 112.

In addition to the NYUv2 dataset, a subset of Microsoft’s COCO [29] is also
used for separate experiment. These images does not have depth labeled.
We use a state-of-the-art model, DepthAnythingV2 to annotate images with
pseudo-labels. These annotations are relative, meaning that depth labels are
scaled between 0 and 1. Ultimately, models trained on these data can only
predict the relative depth. The methodology of using a large-scale model
to produce pseudo-labels comes from the training of the DepthAnythingV2
model [49].

3.8 Evaluation

Evaluation of depth estimation models cannot be done with a single metric,
due to the complex nature of 3-dimensional spaces. For instance, if we only
look at the relationship between pixel, we cannot evaluate absolute scale of
the scene. On the other hand, if we only evaluate a summed average of the
error, we cannot fully grasp, if predictions are correct relative to others. Thus,
the evaluation of MDE models is done with several complementary metrics.
While some errors focus on absolute errors (RMSE), others access relative
depth (AbsRel) or look at the consistency of the predictions (threshold ac-
curacy). Evaluation depth estimation with a variety of these metrics gives a
comprehensive insight to model performance aspects, such as global scale-
and relational accuracy. This section introduces four standard metrics widely
adopted for evaluating monocular depth estimation[3, 2, 24, 49, 28, 13, 45,
13]: root mean squared error, absolute relative error, logarithmic error, and
threshold accuracy.

The first metric, Root Mean Squared Error (RMSE), is defined as:

RMSE =

√
1
|T| ∑

i∈T
(di − d∗i)

2, (3.1)

, where di is the depth prediction for pixel i, d∗i is the ground truth depth
of corresponding pixel and |T| is the number of valid pixels in ground
truth. RMSE provides an intuitive metric great for accessing the absolute
depth difference. It penalizes large errors heavily due to its squared-error
computation. RMSE does not access the relative depth well, as the error does
not penalize relational errors. The next evaluation metric, threshold accuracy
is defined as:

Threshold(δ) =
1
|T| ∑

i∈T
1
[

max
(

di

d∗i
,

d∗i
di

)
< δ

]
, (3.2)

, where δ is a predefined threshold. Threshold accuracy provides a way of
accessing how many predictions are done ”well”. Generally, 1.25, 1.252, and

22

3.8. Evaluation

1.253 are used as three levels of thresholds. Threshold accuracy is strong
because it is scale invariant. Although intuitive, the binary nature of threshold
accuracy limits the metric from penalizing large errors and rewarding very
accurate predictions. Another widely adopted metric is the absolute relative
error (AbsRel) defined as:

AbsRel =
1
|T| ∑

i∈T

|di − d∗i |
d∗i

, (3.3)

AbsRel is very strong in evaluating scenarios, where relative depth and
scene understanding, as it is scale invariant. This makes it a well-suited
metric for comparison between scenes of different depth ranges, e.g. indoor
and outdoor. However, it can be disproportionately affected by errors in
predictions, where the ground truth is close to 0. Finally, we will use the
logarithmic error defined as:

Log10 =
1
|T| ∑

i∈T
| log10(di)− log10(d

∗
i)|, (3.4)

Log10 error particularly useful as it better handles the nonlinear nature of
depth values than prior presented metrics. The metrics presented in this
section, will provide a strong base for evaluation and understanding how
different models perform in certain aspect of depth prediction. This will be
particularly relevant in Chapter 5, where the results of the experiments are
presented.

23

Chapter 4

Experiments

In this section, we presents our experimental investigations aimed at eval-
uating monocular depth estimation methods. First, we compare several
different encoder architectures, such as convolutional neural network (CNN),
transformer-based models, a foundation model, and a lightweight custom
encoder, establishing baseline performance metrics on the NYUv2 dataset.
In doing so, we highlight both the differences in architectural design and
the influence of transfer learning on model performance. Second, through a
series of ablation studies, we systematically examine the impact of various
architectural components, including encoder depth, skip connections, loss
functions, and decoder designs. Finally, we explore a custom approach using
pseudo-labels generated by DepthAnythingV2 on COCO dataset images,
investigating the potential of leveraging unlabeled data for depth estimation.
Each experiment is designed to address specific research questions about
model architecture, component effectiveness, and training methodology, with
results evaluated using standard metrics in the NYUv2 test set.

4.1 Experimental Setup

All experiments were conducted on a Linux server located at the AI Pioneer
Center Copenhagen. The server was equipped with 2 Intel Xeon Gold 5420+
CPUs, each with 28 cores, and 2 NVIDIA RTX 6000 Ada Generation GPUs,
each with 49 GB of memory. However, the model training did not include
distribution on both GPUs. The software environment for all experiments
included Ubuntu 22.04.5 LTS as the operating system. GPU acceleration was
enabled using CUDA 12.2 and NVIDIA driver version 535.183.01. Python
3.10.12 was used to execute the experiments within a virtual environment
created using venv. The virtual environment ensured isolated dependencies,
with all required library versions specified in a requirements.txt file for
reproducibility. The monitoring tool Weights & Biases [44] was used to plot

24

4.2. Architectural Experiment

training curves compare performance during training.

4.2 Architectural Experiment

The first experiment compares the models presented in Section 3. That
is, encoders based on ResNet [17], SwinTransformer [30], DenseNet [19],
DINOv2 [31] as well as an approach from scratch. The experiment focuses
on different methods in designing an encoder/backbone, while the decoder
remains naive and unchanged. The Swin-, DenseNet- and ResNet-encoder
will be trained both with an without pretrained weights from ImageNet-1K
[7] in order to determine the influence of transfer learning.

Encoder Type Pretrained Weights
ResNet50 Yes (ImageNet-1K)
Swin Transformer Yes (ImageNet-1K)
DenseNet169 Yes (ImageNet-1K)
DINOv2 Yes
ResNet50 No
Swin Transformer No
DenseNet169 No
Custom No

Table 4.1: Models Trained for the Architectural Encoder Experiment

The training process utilized a preprocessed subset of the NYUv2 dataset [39],
consisting of approximately 50k paired RGB images and ground truth depth
maps. This subset was obtained from the FastDepth GitHub repository by
Lee et al. [45]. The preprocessed dataset was chosen for practicality, as it
includes only relevant RGB images and depth maps. Unlike the original
dataset, which exceeds 400GB and contains unrelated data, such as object
labels, the subset is conveniently formatted with RGB images and depth
maps stored pairwise in .h5 files. Data preprocessing and augmentation
techniques used for this experiment are outlined in Section 3.7.

Training was conducted on the hardware setup detailed in Section 4.1 for
approximately 1,5 million iterations (30 epochs) with a batch size of 8. The
PyTorch stochastic gradient-based optimizer, AdamW [1], implementing
the algorithm proposed in [21], was used with a learning rate of 1 · 10−4

and weigth decay. This learning rate was selected based on its widespread
adoption in the literature, as demonstrated in works such as [2, 3, 35]. The
loss function employed in this experiment was the standard L1 loss. For
comparisons and insights into the impact of different loss functions, refer to
Section 4.3.

25

4.3. Ablation Study

The accuracy of the model is evaluated on the densely labeled official test set
provided in [39], using the following metrics, as detailed in Section 3.8:

• Root Mean Square Error (RMSE),

• Mean Absolute Relative Error (AbsRel),

• Logarithmic Error (log10), and

• δ thresholds (δ1, δ2, δ3).

Additionally, qualitative evaluation will be conducted using examples of
model predictions performed on the official test split.

4.3 Ablation Study

The ablation study aims to evaluate the contribution of the individual com-
ponents of the model, within the architectural designs tested in the previous
experiment. The data set, the training process, and hyperparameters remain
unchanged from 3.8, unless otherwise specified.

Firstly, a comparison of different encoder depths will be made. Specifically,
three models are trained using pre-trained encoders. These models utilize
pre-trained ResNet50, ResNet101, and ResNet152 backbones, respectively.
We expect deeper models to enhance performance. However, we aim to
determine whether the performance gains justify the additional parameters
and the longer inference time. The models of these experiments were trained
for 20 epochs.

Aditionally, the ablation study investigates the impact of skip connections
between the encoder and decoder in a U-net architecture. This experiment
is performed on both the scratch-trained model and the ResNet50-based
model, while retaining skip connections within the encoder network. This
involves training each model both with and without skip connections between
the encoder and decoder. Based on prior research, it is hypothesized that
skip connections will improve model performance, both quantitatively and
qualitatively, based on the theoretical information preservation they provide.
The models of the ablation are trained for 20 epochs.

Furthermore, the ablation study covers the impact of loss function. The loss
functions covered are L1, L1Smooth, L2 and Huber loss. The comparison will
be made on the model trained from scratch. Models of this experiment was
only trained for 10 epochs.

The final ablation covers two different decoder architecture and the impact
on the final upsampled depth prediction. The comparison will be done
between the architecture adopted in 4.2, upsampling by interpolation, and
an unprecedented design utilizing transposed convolutions.

26

4.4. Pseudo-Label Experiment

Study Component Configurations Tested
Encoder Depth ResNet50, ResNet101, ResNet152

(pretrained)
Skip Connections With and without encoder-decoder

skip connections for ResNet50 and
scratch-trained models

Loss Functions L1, L1Smooth, L2, Huber
Decoder Design Interpolation-based upsampling vs.

transposed convolution

Table 4.2: Summary of Ablation Studies

All ablation studies are evaluated with the same metrics and test set described
in 4.2, and will be evaluated both quantitatively and qualitatively.

4.4 Pseudo-Label Experiment

Finally, we want to explore the feasibility of training MDE models using
pseudo-labeled data. For this experiment, the largest model of DepthAny-
thingV2 [49] has been used as a teacher model to annotate unlabeled image
data from Microsoft’s Common Objects in Context (COCO) [29]. 83k RGB
images were annotated with pseudo-labels. The annotations represent the
relative inverse depth predictions within the interval [0, 1], where values
closer to 0 correspond to greater distances.

Figure 4.1: Example of a pseudo-label from the COCO dataset annotated by DepthAnythingV2.
The left image shows the original COCO RGB image, and the right image shows the corresponding
pseudo-label with relative inverse depth values.

A Resnet based student model is trained solely via supervised learning,
accepting the pseudo-labels as ground-truth data. Model performance will

27

4.5. Reproducibility

be accessed quantitatively on a test subset of pseudolabeled.

4.5 Reproducibility

For reproducibility purposes, all code, configurations, and training scripts
used in these experiments are publicly available on my GitHub repository.
The repository includes a readme.md file with instructions for setting up
the environment, downloading the data set and training the model. The
implementation uses PyTorch and maintains consistent random seeds(10)
across experiments for reproducible results. The requirements.txt specifies
all necessary dependencies and their versions.

28

https://github.com/Shaffer-Lassen/bachelor

Chapter 5

Results & Discussion

The primary objective of this thesis is to investigate and evaluate various
MDE approaches with respect to accuracy, efficiency, and generalization. This
includes comparison of architectures based on CNN, Vision Transformers,
and foundation models, such as DINOv2. Furthermore, the study examines
the role of transfer learning in developing strong performing MDE models, by
leveraging pre-trained networks from other vision tasks, such as classification.
In addition to the architectural focus, we also aim to address the challenge
of data scarcity in MDE by experimenting with models trained solely on
pseudo-labels data generated by a large-scale state-of-the-art model.

Accuracy of different architectures. The quantitative performance of the
models was evaluated using standard metrics for monocular depth estimation,
including the root mean square error (RMSE), the absolute relative error
(AbsRel), the logarithmic error (Log10) and the thresholds δ. The evaluation
of both models initialized with and without pre-trained weights can be seen
in Table 5.

One of the most significance results is the huge accuracy difference between
pre-trained and non-pre-trained models. All models initialized with pre-
trained weight demonstrate a clear advantage across all metrics. The models
with ResNet, DenseNet and Swin encoders was all initialized with weights
from image classification training. Comparing the tightest threshold accuracy
of 25%, the Swin-, DenseNet- and ResNet-based models improved with 31%,
25%, 24%, respectively, while the RMSE was reduced by approximately 25%
across all three models. This significant accuracy boost, utilizing weights
from another task, highlights the importance of leveraging transfer learning
in computer vision task, when they share a common domain. Not only does
it enhance final performance, but it also reduces training time, as encoders
are already capable of extracting meaningful features at initialization, unlike
models initialized with random weights. The idea of feature sharing between

29

different tasks within the same domain is further enhanced by the perfor-
mance of the model with DINOv2 encoder. This model performs best across
all metrics, showing that the foundation model is capable of performing
extremely well on downstream tasks, by having been trained to learn features
that are generally important.

Based on literature surveyed for this thesis, we would expect a transformer-
based encoder to outperform a solely CNN encoder. However, the Swin
transformer did not perform to the expected extent compared to the CNN-
based models. When expecting the results of the Swin-encoder trained
without pretrained weights, it perform better than the CNN-based models
on threshold 1.252 and 1.253, which highlights its ability to capture global
context better. However, it has fewer precise predictions (δ 1) and worse
RMSE. An resonable explanation for the lack of performance boost, might
be the architecture of the Swin-Transformer. It reduces computational needs
by computing self-attention on local windows, instead of capturing global
context from the first forward, as transformers are designed to do. For a
future project, it would be interesting to compare the Swin-Transformer with
another transformer backbone trained from scratch.

Table 5.1: Performance Comparison of Different Encoders on the NYUv2 Test Set. Models are
grouped according to initialization (pretrained vs. from scratch). Evaluation is done on scaled
depth maps at prediction size

Encoders initialized with pretrained weights

Model δ1 ↑ δ2 ↑ δ3 ↑ RMSE↓ AbsRel↓ log10↓
ResNet50 0.801 0.950 0.983 0.648 0.147 0.064
SwinTransformer 0.804 0.947 0.980 0.661 0.150 0.065
DenseNet169 0.808 0.947 0.980 0.662 0.146 0.067
DINOv2 0.903 0.983 0.996 0.480 0.103 0.045

Encoders trained from scratch

Model δ1 ↑ δ2 ↑ δ3 ↑ RMSE↓ AbsRel↓ log10↓
ResNet50 0.644 0.873 0.955 0.877 0.221 0.094
SwinTransformer 0.616 0.878 0.961 0.896 0.229 0.097
DenseNet169 0.647 0.874 0.955 0.867 0.210 0.094
Custom 0.524 0.812 0.934 1.048 0.276 0.117

The custom designed encoder model, which combined a lightweight CNN
with a spatial attention module, did not perform particularly well. Inspecting
the δ1 threshold, it performed 23% worse than the best-performing trained
model from scratch. The intuition of the design was to utilize the spatial
attention mechanism, proven effective for MDE, with the lightweight nature
of a small CNN network. If we had more time, we would have experimented

30

with more complex hybrid architectures for the encoder, searching for the
sweet spot between current hardware and model complexity. In general,
models that leverage pre-trained weight perform reasonably well, although
slightly worse, than comparable models from the literature [9, 24, 2, 10].

This comparison of pre-trained and scratch-trained models reinforces the
importance of transfer learning in achieving high-performance MDE systems.
The superior performance of the DINOv2 encoder provides insight into how
foundation models, trained for general tasks, can be effectively adapted for
depth estimation, advancing the understanding of architecture selection for
MDE. These findings advance our understanding of how architectural design
impacts the accuracy of models, but also emphasize that training strategies
are just as important.

Encoder Depth. In the ablation study of the experimental work, we aimed
to cover the influence of making the following changes on our model – in-
creasing encoder depth, removing skip connections, adopting different loss
functions, and changing the architecture of the decoder. Following results
in Appendix A.1 increasing encoder depth improved performance slightly.
Examining RMSE performance, ResNet101 and ResNet152 obtained a per-
formance boost of approximately 2% and 4.5%, respectively. While accuracy
is improved, the number of parameters also increased from ResNet50’s 28
million, to 47 million for ResNet101 and 62 million for ResNet152, resulting
in a vastly increase in inference time, see Chapter 5. Following the motivation
for MDE of making precise depth estimation feasible for smaller devices, the
modest performance boost must be weighted against the additional compu-
tational requirements. From a practical perspective, the trade-off between
performance and computational requirements becomes critical, when consid-
ering one of the key motivation of MDE – availability. In scenarios such as
smaller real time systems such as drones, where computational resources is
constrained, the accuracy boost might not justify the increased inference time.
This finding highlights the importance of prioritizing based on application
purpose and not just pure accuracy performance.

Skip Connections. The removal of skip connections between the encoder
and decoder led to a slight decrease in quantitative performance Table A.2.
However, examining the qualitative results revealed a much more significant
impact; see Fig. 5.2. The model with skip connections was shown to produce
depth maps with sharper edges around the object boundaries. This improve-
ment can be attributed to the impact of skip connections in transferring
high-resolution spatial details directly from the encoder to the decoder in
all upsampling layers. The model without skip connection relies only on
upsampling the depth map from the deepest encoder layer, resulting in more
blurry depth transitions between objects.

31

Model Total Parameters Trainable Parameters Avg. Inference Time (ms)

custom 5,434,049 5,434,049 4.02
dino 95,558,593 8,978,113 10.31
res50 28,076,801 28,076,801 4.64
res101 47,068,929 47,068,929 8.05
res152 62,712,577 62,712,577 11.44
dense 44,322,689 44,322,689 13.54
swin 96,839,801 96,839,801 13.54

Table 5.2: Comparison of MDE Models: total parameters, trainable parameters, and average
inference time. Inference time is computed on a single Nvidia RTX 6000 GPU, which is an
enterprise GPU.

Figure 5.1: Qualitative results on models with pretrained encoder. a) Input RGB image. b)
Ground truth depth map, c) ResNet50, d) DenseNet169 e) Swin, f) DINOv2

.

Loss functions. The choice of loss function had a very modest impact on
the performance on our lightweight scratch model, see Table A.3. However,
L1 and L1smooth yielded the best results overall. The results of this ablation,
does not provide a huge insight into the field of loss functions in MDE, as
many papers experiment with more advanced combinations of loss function,
especially when dealing with mixed datasets.

Decoder Architecture. This ablation covered the substitution of the decoder
based on interpolation, used in all other experimental work, with another
design using transposed convolutions to upsample the encoders output.
Quantitatively, the interpolation decoder demonstrates a slightly superior
performance, see Appendix A.4. In addition to its quantitative superiority,

32

the interpolation based decoder avoided the checkerboard pattern observed
in predictions from the decoder with transposed convolutions, see Fig. A.3.
These artifacts, a known issue with transposed convolutions, highlight the
practical challenges of using this design despite its theoretical potential for
richer feature reconstruction.

Figure 5.2: Qualitative results on the same ResNet50 model with and without skip connections
between encoder and decoder. a) RGB input, b) ground truth depth map, c) without skip
connections, d) with skip connections.

Pseudo Labeling Experiment. In this experiment, we addressed the chal-
lenge of data scarcity in monocular depth estimation (MDE) utilizing pseudo-
labeled data generated by the DepthAnythingV2 model in the COCO dataset.
Unlike standard test sets with predefined ground truth, the COCO test set
in this study was defined and pseudo-labeled by us, providing a unique
opportunity to evaluate the impact of noisy labels on model performance.

Quantitatively, models trained on pseudolabeled data did not perform partic-
ularly well when evaluated on traditional metrics such as threshold (δ). The
diversity of the COCO dataset, has a very wide range of scenes, object cate-
gories, and spatial configurations, probably made it difficult for the model to
excel in qualitative metrics.

Qualitative results suggest that the model is generalizing well to different
domains. For example, depth maps generated on COCO validation images
retained the sharpness observed in pseudo-labeled training data, as shown in
the Appendix B. This generalization indicates that pseudolabeling can effec-
tively transfer knowledge to unseen environments, even with the limitations
posed by label noise.

33

Figure 5.3: Qualitative results on models with non-pretrained encoder. a) Input RGB image. b)
Ground truth depth map, c) ResNet50, d) DenseNet169 e) Swin, f) Custom

.

These findings highlight the potential of pseudolabeling as a scalable ap-
proach to training MDE models when ground-truth depth data is unavailable
or impractical to obtain. While quantitative performance remains an area for
improvement, the qualitative results demonstrate that pseudo-labeling can
successfully teach models key spatial relationships and structural consistency,
offering a promising direction for future research.

Limitations. The following highlights and discusses the limitations encoun-
tered during the development and experimentation of this project. All models
in this work were trained on data scaled down to a relatively low resolution
of 224 × 224 as well as producing depth maps of half the resolution. This
was an intentional choice made at the beginning of the experimental work to
reduce computational demands and training times. When investigating many
different model architectures, long training times can reduce the coverage of
different approaches. Consequently, this limits the models ability to produce
high-resolution depth predictions.

The experimental work of this project relies on a relatively small dataset
compared to the vast datasets used in recent state-of-the-art models. For
example, the DepthAnythingv2 [49] model was trained on more than 62
million images, enabling greater generalization and performance. In contrast,
the limited data set size in this project inherently restricts the ability of the
models to generalize to diverse and unseen scenarios. This constraint serves
as a reminder of the critical role of dataset size and diversity in model de-
velopment. The pseudo-label experiment served as a small-scale experiment

34

on how to address the data scarcity, but scaling that experiment up would
require extreme computational power and time.

The data augmentation techniques used in this project were limited to hor-
izontal flipping and random cropping. In contrast, many modern MDE
models adopt more extensive augmentation policies, such as brightness ad-
justments, channel swaps, or noise injection [14, 35, 5, 2]. These additional
augmentations help improve robustness and generalization. The absence of
such techniques in this work likely constrained the models’ ability to per-
form effectively across a wide range of lighting and environmental conditions.

The CNN architectures employed in this project are relatively straightfor-
ward, without incorporating recent advancements such as more complex
hybrid architectures. Although these CNN models are robust and grounded
in foundational research, they may not fully leverage modern innovations
essential for achieving state-of-the-art performance. This limitation arose due
to time constraints and the lack of knowledge of advanced neural networks
at the beginning of the project. However, these architectures provided a solid
foundation for experimental exploration and understanding.

The investigation of loss functions in this project was limited to a small
number of frequently used ones. More complex loss functions, often required
for tasks such as mixing datasets or unsupervised learning, were not explored.
This limitation reflects the strict supervised learning approach adopted in this
project. Future investigations could expand into advanced loss functions to
improve model adaptability and performance in more challenging scenarios.

Finally, the project did not produce experimental results on the inference
time of the models on smaller devices. Given more time, experiments could
have been conducted on various devices, such as Nvidia’s Jetson Nano,
to evaluate the feasibility of implementing real-time solutions on smaller,
resource-constrained devices and to contextualize the work. This limitation
leaves open the question of how these methods could perform in practical
real-world applications requiring real-time inference.

In summary, while these limitations define the boundaries of the project,
they also point to opportunities for future exploration and improvement. By
addressing these aspects, future work can build upon the foundations laid by
this project and push toward more robust and generalizable MDE models.

35

Chapter 6

Conclusion & Future Work

After working with the objectives of systematically investigating MDE ar-
chitectures and experimenting with pseudo-labled data to address data
scarcity, we con conclude the following - Firstly, the evaluation of CNN-based
models, Vision Transformers, and foundation models demonstrated clear
differences in performance. Models leveraging initilization of pretrained
encoder weights consistently outperformed those trained from scratch, with
the DINOv2 foundation model achieving the highest accuracy despite frozen
weights, highlighting the importance of robust general feature extraction
and the power of transfer learning. A custom, more lightweight model,
was proposed to lower complexity and inference time, but it’s accuracy was
modest compared to proven architectures such as ResNet, DenseNet and
Swin-transformer.

Secondly, ablation studies highlighted the significance of architectural de-
cisions in MDE models. Increasing encoder depth marginally improved
accuracy but significantly increased inference time, making it less practical
for resource-constrained scenarios. Skip connections were found to be crucial
for preserving local information and producing sharper depth maps. These
findings reinforce the importance of fine-tuning architectural and training
choices based on application-specific constraints.

Finally, the pseudo-labeling experiment addressed the challenge of data
scarcity by utilizing a teacher model to generate pseudo-labeled data from
the COCO dataset. This experiment, although a very small scale, gave some
promising results for the feasibility of training on pseudo-labeled data.

In conclusion, this thesis achieves its objective by providing a detailed investi-
gation of the design, training, and evaluation of MDE models, identifying the
strengths and weaknesses of various architectures, and exploring practical
solutions to data scarcity. The results emphasize that achieving accurate, effi-
cient, and generalizable MDE requires careful consideration of architectural

36

trade-offs, data- and training strategies.

Future work can build upon this work, by exploring alternative foundation
models for pseudo-labeling, optimizing more lightweight architectures for
greater efficiency, and extend evaluations to other more diverse dataset or
benchmark suites. Exploring more complex decoding is also a subject for
future work.

37

Bibliography

[1] Adamw pytorch 2.5 documentation, https://pytorch.org/docs/stable/
generated/torch.optim.AdamW.html, Accessed: 2024-12-29, 2024.

[2] I. Alhashim and P. Wonka, “High quality monocular depth estimation
via transfer learning,” CoRR, vol. abs/1812.11941, 2018. arXiv: 1812.
11941. [Online]. Available: http://arxiv.org/abs/1812.11941.

[3] S. F. Bhat, I. Alhashim, and P. Wonka, “Adabins: Depth estimation
using adaptive bins,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021.

[4] A. Bhoi, “Monocular depth estimation: A survey,” CoRR, vol. abs/1901.09402,
2019. arXiv: 1901.09402. [Online]. Available: http://arxiv.org/abs/
1901.09402.

[5] A. Bochkovskii et al., Depth pro: Sharp monocular metric depth in less
than a second, 2024. arXiv: 2410.02073 [cs.CV]. [Online]. Available:
https://arxiv.org/abs/2410.02073.

[6] R. Bommasani et al., On the opportunities and risks of foundation models,
2022. arXiv: 2108.07258 [cs.LG]. [Online]. Available: https://arxiv.
org/abs/2108.07258.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848.

[8] A. Dosovitskiy et al., An image is worth 16x16 words: Transformers for
image recognition at scale, 2021. arXiv: 2010.11929 [cs.CV]. [Online].
Available: https://arxiv.org/abs/2010.11929.

[9] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” in Advances in Neural
Information Processing Systems (NIPS), 2014.

38

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://arxiv.org/abs/1812.11941
https://arxiv.org/abs/1812.11941
http://arxiv.org/abs/1812.11941
https://arxiv.org/abs/1901.09402
http://arxiv.org/abs/1901.09402
http://arxiv.org/abs/1901.09402
https://arxiv.org/abs/2410.02073
https://arxiv.org/abs/2410.02073
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929

Bibliography

[10] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordinal
regression network for monocular depth estimation,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[11] S. Gasperini, N. Morbitzer, H. Jung, N. Navab, and F. Tombari, “Robust
monocular depth estimation under challenging conditions,” in 2023
IEEE/CVF International Conference on Computer Vision (ICCV), IEEE,
Oct. 2023. doi: 10.1109/iccv51070.2023.00751. [Online]. Available:
http://dx.doi.org/10.1109/ICCV51070.2023.00751.

[12] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[13] C. Godard, O. Mac Aodha, and G. J. Brostow, Unsupervised monocu-
lar depth estimation with left-right consistency, 2017. arXiv: 1609.03677
[cs.CV]. [Online]. Available: https://arxiv.org/abs/1609.03677.

[14] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging
into self-supervised monocular depth estimation,” in Proceedings of the
IEEE International Conference on Computer Vision (ICCV), 2019.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[16] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
autoencoders are scalable vision learners,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[17] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recog-
nition, 2015. arXiv: 1512.03385 [cs.CV]. [Online]. Available: https:
//arxiv.org/abs/1512.03385.

[18] A. G. Howard et al., Mobilenets: Efficient convolutional neural networks
for mobile vision applications, 2017. arXiv: 1704.04861 [cs.CV]. [Online].
Available: https://arxiv.org/abs/1704.04861.

[19] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, Densely
connected convolutional networks, 2018. arXiv: 1608.06993 [cs.CV]. [On-
line]. Available: https://arxiv.org/abs/1608.06993.

[20] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, 2015. arXiv: 1502.03167
[cs.LG]. [Online]. Available: https://arxiv.org/abs/1502.03167.

[21] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017.
arXiv: 1412.6980 [cs.LG]. [Online]. Available: https://arxiv.org/
abs/1412.6980.

39

https://doi.org/10.1109/iccv51070.2023.00751
http://dx.doi.org/10.1109/ICCV51070.2023.00751
https://arxiv.org/abs/1609.03677
https://arxiv.org/abs/1609.03677
https://arxiv.org/abs/1609.03677
http://www.deeplearningbook.org
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Bibliography

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in neural
information processing systems, vol. 25, 2012, pp. 1097–1105.

[23] H. Laga, L. V. Jospin, F. Boussaid, and M. Bennamoun, “A survey on
deep learning techniques for stereo-based depth estimation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 4,
pp. 1738–1764, Apr. 2022, issn: 1939-3539. doi: 10.1109/tpami.2020.
3032602. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.
2020.3032602.

[24] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in 3D Vision (3DV), 2016 Fourth International Conference on, 2016.

[25] Leakyrelu - pytorch 2.5 documentation, https://pytorch.org/docs/
stable/generated/torch.nn.LeakyReLU.html, Accessed: 2025-01-06,
2025.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[27] D.-J. Lee et al., Lightweight monocular depth estimation via token-sharing
transformer, 2023. arXiv: 2306 . 05682 [cs.CV]. [Online]. Available:
https://arxiv.org/abs/2306.05682.

[28] J. H. Lee, M.-K. Han, D. W. Ko, and I. H. Suh, “From big to small:
Multi-scale local planar guidance for monocular depth estimation,”
CoRR, vol. abs/1907.10326, 2019. arXiv: 1907.10326. [Online]. Available:
http://arxiv.org/abs/1907.10326.

[29] T.-Y. Lin et al., Microsoft coco: Common objects in context, 2015. arXiv:
1405.0312 [cs.CV]. [Online]. Available: https://arxiv.org/abs/
1405.0312.

[30] Z. Liu et al., Swin transformer: Hierarchical vision transformer using shifted
windows, 2021. arXiv: 2103.14030 [cs.CV]. [Online]. Available: https:
//arxiv.org/abs/2103.14030.

[31] M. Oquab et al., Dinov2: Learning robust visual features without supervision,
2024. arXiv: 2304.07193 [cs.CV]. [Online]. Available: https://arxiv.
org/abs/2304.07193.

[32] N. Padkan, P. Trybala, R. Battisti, F. Remondino, and C. Bergeret,
“EVALUATING MONOCULAR DEPTH ESTIMATION METHODS,”
The International Archives of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, vol. XLVIII-1/W3-2023, pp. 137–144, 2023. doi:
10.5194/isprs-archives-XLVIII-1-W3-2023-137-2023. [Online].
Available: https://doi.org/10.5194/isprs-archives-XLVIII-1-
W3-2023-137-2023.

40

https://doi.org/10.1109/tpami.2020.3032602
https://doi.org/10.1109/tpami.2020.3032602
http://dx.doi.org/10.1109/TPAMI.2020.3032602
http://dx.doi.org/10.1109/TPAMI.2020.3032602
https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
https://arxiv.org/abs/2306.05682
https://arxiv.org/abs/2306.05682
https://arxiv.org/abs/1907.10326
http://arxiv.org/abs/1907.10326
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2304.07193
https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-137-2023
https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-137-2023
https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-137-2023

Bibliography

[33] U. Rajapaksha, F. Sohel, H. Laga, D. Diepeveen, and M. Bennamoun,
“Deep learning-based depth estimation methods from monocular image
and videos: A comprehensive survey,” ACM Computing Surveys, vol. 56,
no. 12, pp. 1–51, Oct. 2024, issn: 1557-7341. doi: 10.1145/3677327.
[Online]. Available: http://dx.doi.org/10.1145/3677327.

[34] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for
dense prediction,” in Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2021.

[35] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, Towards
robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset
transfer, 2020. arXiv: 1907.01341 [cs.CV]. [Online]. Available: https:
//arxiv.org/abs/1907.01341.

[36] Relu - pytorch 2.5 documentation, https://pytorch.org/docs/stable/
generated/torch.nn.ReLU.html, Accessed: 2025-01-06, 2025.

[37] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks
for biomedical image segmentation, 2015. arXiv: 1505.04597 [cs.CV].
[Online]. Available: https://arxiv.org/abs/1505.04597.

[38] Sigmoid - pytorch 2.5 documentation, https://pytorch.org/docs/
stable/generated/torch.nn.Sigmoid.html, Accessed: 2025-01-06,
2025.

[39] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from rgbd images,” in Proceedings of the European
Conference on Computer Vision (ECCV), Springer, Berlin, Heidelberg,
2012, pp. 746–760. doi: 10.1007/978-3-642-33715-4_54.

[40] M. Tan and Q. V. Le, Efficientnet: Rethinking model scaling for convolutional
neural networks, 2020. arXiv: 1905.11946 [cs.LG]. [Online]. Available:
https://arxiv.org/abs/1905.11946.

[41] A. Varma, H. Chawla, B. Zonooz, and E. Arani, “Transformers in
self-supervised monocular depth estimation with unknown camera
intrinsics,” in Proceedings of the 17th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications,
SCITEPRESS - Science and Technology Publications, 2022. doi: 10.
5220/0010884000003124. [Online]. Available: http://dx.doi.org/10.
5220/0010884000003124.

[42] A. Vaswani et al., Attention is all you need, 2023. arXiv: 1706.03762
[cs.CL]. [Online]. Available: https://arxiv.org/abs/1706.03762.

[43] Vision/torchvision/models/resnet.py at main - pytorch/vision, https : / /

github.com/pytorch/vision/blob/main/torchvision/models/

resnet.py, Accessed: 2025-01-04, 2025.

[44] Weights biases: The ai developer platform, https://wandb.ai/site/,
Accessed: 2025-01-08, 2025.

41

https://doi.org/10.1145/3677327
http://dx.doi.org/10.1145/3677327
https://arxiv.org/abs/1907.01341
https://arxiv.org/abs/1907.01341
https://arxiv.org/abs/1907.01341
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://pytorch.org/docs/stable/generated/torch.nn.Sigmoid.html
https://pytorch.org/docs/stable/generated/torch.nn.Sigmoid.html
https://doi.org/10.1007/978-3-642-33715-4_54
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://doi.org/10.5220/0010884000003124
https://doi.org/10.5220/0010884000003124
http://dx.doi.org/10.5220/0010884000003124
http://dx.doi.org/10.5220/0010884000003124
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://wandb.ai/site/

Bibliography

[45] Wofk, Diana and Ma, Fangchang and Yang, Tien-Ju and Karaman,
Sertac and Sze, Vivienne, “FastDepth: Fast Monocular Depth Estimation
on Embedded Systems,” in IEEE International Conference on Robotics and
Automation (ICRA), 2019.

[46] F. Wu and L. Chen, Depth estimation maps of lidar and stereo images, 2022.
arXiv: 2212.11741 [cs.CV]. [Online]. Available: https://arxiv.org/
abs/2212.11741.

[47] G. Yang, H. Tang, M. Ding, N. Sebe, and E. Ricci, Transformer-based
attention networks for continuous pixel-wise prediction, 2021. arXiv: 2103.
12091 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2103.
12091.

[48] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao, Depth anything:
Unleashing the power of large-scale unlabeled data, 2024. arXiv: 2401.10891
[cs.CV]. [Online]. Available: https://arxiv.org/abs/2401.10891.

[49] L. Yang et al., Depth anything v2, 2024. arXiv: 2406.09414 [cs.CV].
[Online]. Available: https://arxiv.org/abs/2406.09414.

[50] J. Zhang and Y. Ma, “Knowledge distillation: A survey,” International
Journal of Automation and Computing, vol. 18, no. 3, pp. 1–17, 2021.

[51] N. Zhang, F. Nex, G. Vosselman, and N. Kerle, Lite-mono: A lightweight
cnn and transformer architecture for self-supervised monocular depth esti-
mation, 2023. arXiv: 2211.13202 [cs.CV]. [Online]. Available: https:
//arxiv.org/abs/2211.13202.

[52] C. Zhao et al., “Monovit: Self-supervised monocular depth estimation
with a vision transformer,” in 2022 International Conference on 3D Vision
(3DV), IEEE, Sep. 2022, pp. 668–678. doi: 10.1109/3dv57658.2022.
00077. [Online]. Available: http://dx.doi.org/10.1109/3DV57658.
2022.00077.

[53] W. Zhao, Z. Gong, C. Wang, and P. Feng, “Domain adaptation for
monocular depth estimation using semantic information,” in Interna-
tional Conference on Pattern Recognition (ICPR), 2020.

42

https://arxiv.org/abs/2212.11741
https://arxiv.org/abs/2212.11741
https://arxiv.org/abs/2212.11741
https://arxiv.org/abs/2103.12091
https://arxiv.org/abs/2103.12091
https://arxiv.org/abs/2103.12091
https://arxiv.org/abs/2103.12091
https://arxiv.org/abs/2401.10891
https://arxiv.org/abs/2401.10891
https://arxiv.org/abs/2401.10891
https://arxiv.org/abs/2406.09414
https://arxiv.org/abs/2406.09414
https://arxiv.org/abs/2211.13202
https://arxiv.org/abs/2211.13202
https://arxiv.org/abs/2211.13202
https://doi.org/10.1109/3dv57658.2022.00077
https://doi.org/10.1109/3dv57658.2022.00077
http://dx.doi.org/10.1109/3DV57658.2022.00077
http://dx.doi.org/10.1109/3DV57658.2022.00077

Appendix A

Ablation Study

A.1 Encoder Depth

Table A.1: Performance Comparison of Different ResNet Depths on the NYUv2 Test Set.

Comparison of Encoder Depth – Training through 10 epochs

Model δ1 ↑ δ2 ↑ δ3 ↑ RMSE↓ AbsRel↓ log10↓
ResNet50 0.8009 0.9486 0.9814 0.6433 0.1516 0.0642
ResNet101 0.8126 0.9509 0.9837 0.6288 0.1430 0.0617
ResNet152 0.8215 0.9588 0.9872 0.6131 0.1390 0.0597

30.0M 35.0M 40.0M 45.0M 50.0M 55.0M 60.0M
Number of Parameters

0

1

2

3

4

RM
SE

 Im
pr

ov
em

en
t (

%
)

ResNet50

ResNet101

ResNet152
Relative Model Performance vs Number of Parameters

ResNet50 ResNet101 ResNet152

Figure A.1: Relative performance boost (%) as encoder depth increases on the NYUv2 test set.

43

A.2. Skip Connections

Figure A.2: Qualitative comparison of encoder depth for ground truth and predictions using
ResNet50, ResNet101, and ResNet152.

A.2 Skip Connections

Table A.2: Performance Comparison With and Without Skip Connections

ResNet50 Model Variants on NYUv2 Test Set

Variant δ1 ↑ δ2 ↑ δ3 ↑ RMSE↓ AbsRel↓ log10↓
With Skip 0.8009 0.9486 0.9814 0.6433 0.1516 0.0642
Without Skip 0.7969 0.9471 0.9840 0.6494 0.1475 0.0644

A.3 Loss Functions

Table A.3: Performance Comparison of Different Loss Functions for a Scratch-Trained Model on
NYUv2

Evaluation of Loss Functions on NYUv2 Test Set

Loss Function δ1 ↑ δ2 ↑ δ3 ↑ RMSE↓ AbsRel↓ log10↓
Huber 0.5107 0.8071 0.9368 1.0410 0.2837 0.1187
L2 0.4982 0.8016 0.9391 1.0475 0.2797 0.1202
L1smooth 0.5112 0.8136 0.9404 1.0331 0.2764 0.1174
L1 0.5126 0.8076 0.9357 1.0479 0.2872 0.1186

44

A.4. Decoder Architecture.

A.4 Decoder Architecture.

Decoder Variants on NYUv2 Test Set - Scratch Model

Decoder δ1 ↑ δ2 ↑ δ3 ↑ RMSE↓ AbsRel↓ log10↓
Interpolation 0.524 0.812 0.934 1.048 0.276 0.117
Transposed 0.507 0.797 0.930 1.065 0.292 0.121

Table A.4: Performance Comparison Between Interpolation and Transposed Convolutions as
Decoder Architectures

Figure A.3: Qualitative performance comparison of decoders. Columns represent: (a) input RGB
image, (b) ground truth depth map, (c) depth predictions with interpolation decoder, and (d)
depth predictions with transposed convolution decoder.

45

Appendix B

Pseudo Labels

Table B.1: Performance - models trained on COCO. Evaluated on unseen subset of COCO

Model δ1 ↑ δ2 ↑ δ3 ↑
DINODepth 0.5658 0.7626 0.8534
ResNet152 0.5015 0.6987 0.8016
Swin 0.5043 0.7034 0.8054
Scratch 0.3802 0.5820 0.7052

46

Figure B.1: Qualitative performance of model trained on COCO dataset with DINOv2 as encoder

47

Figure B.2: Qualitative performance of the model trained on the COCO dataset with Swin
Transformer as encoder

48

Figure B.3: Qualitative performance of the model trained on the COCO dataset with ResNet152
as encoder

49

Figure B.4: Qualitative performance of the model trained on the COCO dataset with the custom
Scratch model as encoder

50

	Contents
	Introduction
	Background
	Depth Estimation
	Traditional Depth Estimation
	Monocular Depth Estimation

	Convolutional Neural Networks (CNN's)
	Convolutional Layers
	Activation functions
	Pooling Layers, Batch Normalization

	Vision Transformers
	Patch Embeddings
	Self-Attention Mechanism, Multi-Head Attention & Transformer Blocks

	Related work
	CNN-based Approaches
	Transformer-based Approaches
	Foundation Models for Depth
	Self- and Semi-supervised Training

	Ongoing Challenges in Monocular Depth Estimation
	Motivation

	Methodology
	Architectures in this work
	CNN as Encoder
	ResNet
	DenseNet

	Transformer as Encoder (Swin-Transformer)
	Foundation Model as Encoder (DINOv2)
	Custom Method - Lightweight CNN with Spatial Attention)
	Decoder
	Data and Training
	Evaluation

	Experiments
	Experimental Setup
	Architectural Experiment
	Ablation Study
	Pseudo-Label Experiment
	Reproducibility

	Results & Discussion
	Conclusion & Future Work
	Bibliography
	Ablation Study
	Encoder Depth
	Skip Connections
	Loss Functions
	Decoder Architecture.

	Pseudo Labels

